Non-linear Task-Space Disturbance Observer for Position Regulation of Redundant Robot Arms against Perturbations in 3D Environments

نویسندگان

  • Tapomayukh Bhattacharjee
  • Yonghwan Oh
  • Sang-Rok Oh
چکیده

Many day-to-day activities require the dexterous manipulation of a redundant humanoid arm in complex 3D environments. However, position regulation of such robot arm systems becomes very difficult in presence of non-linear uncertainties in the system. Also, perturbations exist due to various unwanted interactions with obstacles for clumsy environments in which obstacle avoidance is not possible, and this makes position regulation even more difficult. This report proposes a non-linear task-space disturbance observer by virtue of which position regulation of such robotic systems can be achieved in spite of such perturbations and uncertainties. Simulations are conducted using a 7-DOF redundant robot arm system to show the effectiveness of the proposed method. These results are then compared with the case of a conventional massdamper based task-space disturbance observer to show the enhancement in performance using the developed concept. This proposed method is then applied to a controller which exhibits human-like motion characteristics for reaching a target. Arbitrary perturbations in the form of interactions with obstacles are introduced in its path. Results show that the robot end-effector successfully continues to move in its path of a human-like quasi-straight trajectory even if the joint trajectories deviated by a considerable amount due to the perturbations. These results are also compared with that of the unperturbed motion of the robot which further prove the significance of the developed scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Feedback Stabilization of a Nonlinear Flexible Gantry Manipulator Using Disturbance Observer

This paper aims to develop a boundary control solution for a single-link gantry robot manipulator with one axis of rotation. The control procedure is considered with link’s transverse vibrations while system undergoes rigid body nonlinear large rotation and translation. Initially, based on Hamilton principle, governing equations of hybrid motions as a set of partial differential equations...

متن کامل

Reconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot

This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...

متن کامل

Designing a Robust Control Scheme for Robotic Systems with an Adaptive Observer

This paper introduces a robust task-space control scheme for a robotic system with an adaptive observer. The proposed approach does not require the availability of the system states and an adaptive observer is developed to estimate the state variables. These estimated states are then used in the control scheme. First, the dynamic model of a robot is derived. Next, an observer-based robust contr...

متن کامل

Motion Behavior of Null Space in Redundant Robotic Manipulators

As well known, robot manipulator is utilized in many industrial fields. However manipulator motion has a single function at most and is so limited because of low degree-offreedom motion. To improve this issue, it is necessary for the robot manipulator to have redundant degree-of-freedom motion. The motion spaces of redundant manipulator are divided into work space motion and null space motion. ...

متن کامل

Adaptive 2.5D Visual Servoing of Kinematically Redundant Robot Manipulators

In this paper, the 3-Dimensional (3D) position and orientation of a camera held by the end-effector of a robot manipulator is regulated to a constant desired position and orientation despite (i) the lack of depth information of the actual or desired camera position from a target, (ii) the lack of a 3D model of the target object, and (iii) parametric uncertainty in the dynamic model of the robot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1311.0388  شماره 

صفحات  -

تاریخ انتشار 2013